ANALYZING TIME-DELAY HISTOGRAMS FROM 2019-2020 CHANGVAN LATITUDE SURVEY

> PANUTDA YAKUM, Asst. Prof. Dr. Waraporn Nuntiyakul

DEPARTMENT OF PHYSICS AND MATERIALS SCIENCE. CHIANG MAI UNIVERSITY, CHIANG MAI, THAILAND

Post Bootcamp 25 Dec 2020

Introduction

Cosmic rays Neutron monitor Latitude survey

Data analysis

Time-delay histogram Leader fraction

Results

Picture from: https://science.sciencemag.org/content/314/5798/429/F1

Introduction

Introduction

CHANGVAN NEUTRON DETECTORS

The simulation of neutron monitor detector of Changvan by FLUKA simulation program. Ref. Miss Kanokkarn Fongsamut

CHANGVAN LATITUDE SURVEY

N

The latitude surveys in 2018-2019 (CN35) and 2019-2020 (CN36)

Shanghai

Zhongshan Station Khunlun

McMurdo_v °

Great Wall Station

Hobart Christchurch Chinare35-No data
Chinare35-Data
Chinare36-Data

Figure from : Miss Sidarat Khamphakdee

SP

TIME-DELAY HISTOGRAMS 🌲

• Distribution of the time delay between successive neutron counts at one counter tube recorded during one specific 1 h interval. (left) Long time delays show the exponential distribution typical of unrelated events, while (right) short time delays deviate substantially from the exponential function (red line). The electronic dead time is typically $t_d \sim 80 - 90 \mu s$.

Leader fraction

- Leader fraction (*L*) refers to neutron counts that do not follow a preceding neutron count in the same counter from the same atmospheric secondary particle
- We statistically calculate the leader fraction (*L*) from histograms of time delay that related to cosmic ray spectral index.
- Amplitude of exponential tail (red) indicates rate of "leaders" arriving by chance, not "following" in temporal association with preceding count.

Leader fraction calculation

$$L = \frac{\frac{A_0}{\alpha} e^{-\alpha t_d}}{\sum_{t=t_d}^{t_0} N_t + \frac{A_0}{\alpha} e^{-\alpha t_0}}$$

where α and A_0 are the parameters from the hourly long-time histogram fit. $t_0 = 0.142$ s is the overflow time in the electronic system, and dead time $t_d = 87 \ \mu s$. The term $\sum_{t=t_d}^{t_0} N_t$ is the sum of the neutron pulses for all time bins from t_d to t_0 from the recorded histogram files

Result

Time-delay histogram of 2nd hour UT on the 20th December 2019 of the survey year 2020

Result

Leader fraction of single-tube in the survey year 2018-2019

Leader fraction of single-tube in the survey year 2019-2020

Result

Leader fraction of cross-tube in the survey year 2019-2020

Tube ratio of the leader fraction of single-tube in the survey year 2018-2019

Gaussian fits of the survey year 2018-2019 (DOY 42.708 – 55.77)

Gaussian fits of the survey year 2018-2019 (DOY 55.77 – 70.00)

- Eliminate outliers
- Data set for further analysis
 - Pressure Correction
 - Short-term Moduration Correction
 - Temperature Correction
- Integral Response function / Differential Response function

GALACTIC COSMIC RAY FLUX

Distribution of cosmic-ray flux as a function of particle energy.

Dependence of the leader fraction L measured by the mobile neutron monitor on the apparent cutoff rigidity R_c for the six surveys.

Mangeard et al., 2016

THANK YOU FOR YOUR ATTENTION