

FLUKA SIMULATION AT SOUTH POLE STATION

Audcharaporn Pagwhan (Ink)

OUTLINE

- 1. Introduction
- 2. Objective
- 3. Methodology
- 4. Results
- 5. Summary
- 6. Future work

1 INTRODUCTION

- Cosmic Rays
- Neutron Monitor
- FLUKA Monte-Carlo Simulation
- Yield Function

COSMIC RAY

cos mic ray

[cosmic ray] (1)

NOUN cosmic rays (plural noun)

a highly energetic atomic nucleus or other particle travelling through space at a speed approaching that of light.

See less

 \wedge

Cosmic rays can be divided into two types:

4

- Galactic Cosmic Rays (GCRs) and Extragalactic Cosmic Rays, i.e., high-energy particles originating outside the solar system.
- Solar Energetic Particles (SEPs), high-energy particles (protons) emitted by the sun, primarily in solar activities.

COSMIC RAY

COSMIC RAYS DETECTOR

• Neutron monitors (NMs) are ground-based detectors that detect the secondary particles with high energies

HOW DOES NM WORKS?

DETECTOR SIMULATION

flair is an advanced user-friendly interface for FLUKA to facilitate the editing of FLUKA input files

FLUKA is Monte Carlo simulations of particle transport and interactions in matter

💭 + [untitled] - flair Elair 🚱 Input 💕 Geometry 🚴 Run 🛄 Plot Viewer Show -😤 Fluka 🔻 # Preprocessor 🔻 🔀 Delete Move Up *all* X Cut 对 Load 🛛 🕹 Import 🔻 Material • Comment • Editor Change V Paste 🔄 Copy 😜 🔚 Save 🕶 🌭 Export 🔻 ab. Application Clone State - CRefresh Move Down General Primary Input Geometry ∃ ③Input 3P28 Jube bare-64: < <u>T</u> **Body** Media General 456789012345678901234567890123456789012345 34 ⊘ Transform Physics > END Transport Geometry 0 GEOBEGIN Biasing Media o Mat: 🔻 Step: **⊳**₩ GEOEND Scoring - MATERIAL All E: off ▼ Flair lasi D: On ▼ Giant Dipole: On ▼ - COMPOUND LATTSNGL Preprocessor to Mat: @LASTMAT ▼ Step: 1. ->LOW-MAT PLOTGEOM MUPHOTON g/trans: 0.0 p inter: 0.0 MAT-PROP REGION v to Mat: @LASTMAT ▼ Step: 1. PAIRBREM **VOXELS** + Thr: 0.0 v Thr: 0.0012 Physics Mat: VACUUM ▼ to Mat: @LASTMAT ▼ Step: 1. Transport **& EMFCUT** Type: transport v Biasing e-e+ Threshold: Kinetic v e-e+ Ekin: 0.001 v: 1.E-4 Scoring Reg: @LASTREG ▼ to Reg: @LASTREG ▼ Step: ∲⊡Flair BEAM Beam: Momentum v p: 10000.0 Part: V Preprocessor ∆p: Flat ▼ Δp : ∆¢: Flat ▼ $\Delta \phi$: Shape(X): Rectangular ▼ ∆x: Shape(Y): Rectangular ▼ ∆y: **SOURCE** #1: #2: #3: sdum: neut #4: #5: #6:

Create Model by using flair interface

Bare Monitor at South Pole (BANM)

Bare Monitor at South Pole (BANM)

⁽b) Neutron monitor

YIELD FUNCTION

- The yield function is the actual relationship between <u>count rates</u>, observed by detectors and <u>fluxes at the top of atmosphere</u>.
 - □ Atmospheric Simulation → We use data from GDAS and NRLMSISE-00 (From Pierre Simon)
 - □ Detector Simulation \rightarrow SPNM, BANM

2 OBJECTIVE

To find the Count Rate from simulation
Compare the count rate from simulation with the actual count rate

3 METHODOLOGY

- Atmospheric Simulation
- Detector Simulation

Get the
detector'sCreate a modelExport pictureRun FLUKA inAnalyze Datadetector'sfrom flairserverusing pythondetailscode(dimension,
material, etc.)

4 RESULTS

BARE MONITOR AT SOUTH POLE

Atmospheric Simulation

	Proton	Alpha
# Cycles	200	200
# Particle	10,000	10,000

Detector Simulation (139.43 counts/s at 1GV)

	neutron	proton	muon
# Cycles	500	500	406
# Particle	1M	1M	1M

PHI = 576.5 MV (average Jan 2011 to 2016 - US17) Real Count rates of 1-31 January from 2011 to 2016 from **NMDB**

SIMULATION TESTS

4. Snow surrounding → hemisphere (Snow height 98.7 cm) ~543.52 counts/s
5. Wood structure of SPNM _______ Remove Wood inside ~597.05 counts/s
6. Wood structure of SPNM _______ Remove Wood outside ~598.85 counts/s

3-NM64 AT SOUTH POLE

Atmospheric Simulation

	Proton	Alpha
# Cycles	200	200
# Particle	10,000	10,000

Detector Simulation (520.61 counts/s at 1GV)

	neutron	proton	muon
# Cycles	98	34	20
# Particle	1M	1M	1M

PHI = 576.5 MV (average Jan 2011 to 2016 - US17) Real Count rates of 1-31 January from 2011 to 2016 from NMDB

5 SUMMARY

□ Density of Lead in FLUKA simulation, we found that lead density caused significantly greater count rates.
□ After modify geometry → count rate decrease 13 %

FUTURE WORK

Geometry

Modified lead compound

Validation yield function by using time series of simulation counts compare with real count rates

THANK YOU

INK PAGWHAN audcharaporn@narit.or.th

PRODUCER'S ASSAY CERTIFICATE

VESSEL NAME			MAERSK JABAL 0525 /										
LOAD PORT:			VOSTOCHNIY PORT										
DISCHARGE PORT:				BANGKOK									
B/L NO:				207081071/									
B/L DATE:				08.01.21/									
B/L NET WEIGHT:			515.895/MT										
B/L GROSS WEIGHT:				516.695MT									
CARGO D	ESCRIPTI	ON			< <yk>> BF</yk>	RAND LEA	D METAL	INGOTS !	STRAPPE	D INTO BL	INDLES		
ASSAYS, S	%											3	1
# melt	Pb	AR	Cu	Zn	Bi	As	Sn	Sb	Fe	Cd	Ni	Со	Те
427/	99.994	0.00026,	0.00011	0.0004	0.0022 /	0.0004	0.0004	0.0004	0.0005	0.00013	0.0001	<0.0002	<0.0002
429	99.994	0.00028	0.00011	0.0004	0.0029	0.0004	0.0004	0.0004	0.0005	0.00013	0.0001	<0.0002	<0.0002
430	99.994	0.00029 -	0.00011	0.0004	0.0022 /	0.0004	0.0004	0.0004	0.0005	0.00013	0.0001	<0.0002	<0.0002
431	99.994	0.00022.	0.00011	0.0004	0.0029 /	0.0004	0.0004	0.0004	0.0005	0.00013	0.0001	<0.0002	<0.0002
432	99.994	0.00044,	0.00011	0.0004	0.0023 /	0.0004	0.0004	0.0004	0.0005	0.00013	0.0001	<0.0002	<0.0002
434 /	99.994	0.00032-	0.00011	0.0004	0.0022 /	0.0004	0.0004	0.0004	0.0005	0.00013	0.0001	<0.0002	<0.0002
436 /	99.994	0.00045/	0.00011	0.0004	0.0027 /	0.0004	0.0004	0.0004	0.0005	0.00013	0.0001	<0.0002	<0.0002
441 '	99.994	0.00047,	0.00011	0.0004	0.0022,	0.0004	0.0004	0.0004	0.0005	0.00013	0.0001	<0.0002	<0.0002
443 /	99.994	0.00034 /	0.00011	0.0004	0.0023 -	0.0004	0.0004	0.0004	0.0005	0.00013	0.0001	<0.0002	<0.0002
442	99.994	0.00038	0.00011	0.0004	0.0023	0.0004	0.0004	0.0004	0.0005	0.00013	0.0001	<0.0002	<0.0002
	1			1							and the second		
							and the second second				and these		

ber preceso G

WE, LTD «KAZZINC», CERTIFY THE ABOVE ASSAYS.

Y.Liverinov Sales Department Specialist Date of Issue: 08.01.21