What can we learn from neutron monitor multiplicities?

Alejandro Sáiz Mahidol University

Princess Sirindhorn Neutron Monitor

Neutron Detectors

Neutron Monitors

Spectrum of Primary Cosmic Rays (Outside Earth's Atmosphere)

- Steep decrease with energy (power law)
- Image: Wikipedia

Multiplicity and cosmic ray energy

- NMs were originally designed to give a count rate as a proxy of cosmic ray flux through Earth's magnetic field at a location
- No energy information
- The producer (Pb) is used to amplify the signal: multiple counts per event
- *Multiplicity increases with energy*

Same-counter analysis

- Data needed: times of detection, or between detections (pulses)
- Time between clusters of pulses on average much longer than time within pulses in a cluster...
- …but can be shorter! (→ chance coincidence)
- Electronics have a dead time

Window multiplicity

- Suggested by Hughes et al (1964)
- Implemented as hardware: "multiplicity analyzer"
- Nowadays implemented in software
- *Multiplicity inside a "time window"*

Window multiplicity

- Multiplicity rates R₁, R₂, ..., R_n record number of events with n detections within the window
- Cross contamination due to chance coincidences not simple to remove

$$\begin{split} R_{1} &= R_{1}^{'}D \\ R_{2} &= \frac{R_{2}^{'}D - R_{1}^{2} T_{g} \tilde{W}_{1}^{1}}{1 + R_{1} T_{g} \tilde{W}_{1}^{2}} \\ R_{3} &= \frac{R_{3}^{'}D - [R_{2}R_{1}T_{g} \tilde{W}_{1}^{1} + R_{2}^{2}T_{g} \tilde{W}_{1}^{2} + 1/2R_{1}^{3}(T_{g} \tilde{W}_{1}^{1})^{2} + R_{1}R_{2}T_{g} \tilde{W}_{2}^{2}]}{1 + R_{1}T_{g} \tilde{W}_{2}^{3}} \\ R_{4} &= \frac{R_{4}^{'}D - \left[\frac{R_{3}R_{1}T_{g} \tilde{W}_{1}^{1} + R_{3}R_{2}T_{g} \tilde{W}_{1}^{2} + 1/2R_{2}(R_{1}T_{g} \tilde{W}_{1}^{1})^{2} \\ + R_{2}^{2}T_{g} \tilde{W}_{2}^{2} + R_{2}R_{3}T_{g} \tilde{W}_{2}^{3} + R_{2}(R_{1}T_{g})^{2} \tilde{W}_{1}^{1} \tilde{W}_{2}^{2} + R_{1}R_{3}T_{g} \tilde{W}_{3}^{3}} \right] \\ R_{4} &= \frac{R_{4}^{'}D - \left[\frac{R_{4}^{'}D - R_{4}^{'}R_{4}^{'}R_{2}^{'}R_{1}^{'}R_{1}^{'}R_{2}^{'}R_{2}^{'}R_{2}^{'}R_{2}^{'}R_{2}^{'}R_{3$$

[P. Singh PhD thesis, 1971]

Use of two dead times: Apatity NM

"The **dead time** is the period during which the registration channel is closed after detecting the next neutron. There are two kinds of Apatity NM count rate data: with Large dead time (LDT) and Small dead time (SDT). The size of LDT, 1200 microseconds, is chosen so that to block the channel on a lifetime of *multiplicity neutrons in the neutron monitor.* Thus, at use the LDT to each primary neutron there corresponds one pulse. The result is in a *better statistical accuracy of registered count* rate of neutrons. Compensation of losses because of dead time is provided with a special electronic circuit. The channel with SDT, 10 microseconds (same as in the original neutron *monitor of Charmichael), collects pulses from* all registered neutrons, including ones of *multiplicity.*"

http://pgia.ru/cosmicray/

LDT count rate is the rate of clusters of pulses

Use of two dead times: Apatity NM

Comparing LDT with SDT rates, multiplicity can be obtained

Chance coincidences are difficult to deal with, rate of clusters may be understimated

Time-delay distributions

- Distribution of times between consecutive detections shows an exponential tail of uncorrelated counts
- Bieber et al. (2004) used Monte Carlo simulations to reproduce observed histograms for a given CR spectrum, but discrepancies were significant

[J. W. Bieber et al, 2004]

Time-delay distributions

- Ruffolo et al (2016) used an exponential fit to estimate the rate of clusters (or "leaders")
- Chance coincidences do not affect the result
- The ratio of leader pulses to total pulses, or "leader fraction", can be interpreted as inverse multiplicity

[D. Ruffolo et al, 2016]

Leader fraction

 Mangeard et al (2016) showed how the leader fraction depended on the geomagnetic cutoff and on solar modulation during a series of latitude surveys

[P.-S. Mangeard et al, 2016]

Leader fraction

 Banglieng et al (2020) presented a 10-year long time series of leader fraction L at the Princess Sirindhorn Neutron Monitor at high rigidity cutoff, showing variations of interest

[C. Banglieng et al, 2020]

Leader fraction

 Banglieng et al (2020) presented a 3-year long time series of leader fraction L at the South Pole Neutron Monitor at high rigidity cutoff, showing variations of interest

[C. Banglieng et al, 2020]

Leader fraction L and Count rate C at polar stations

[P. Muangha et al, in preparation]

SP L vs AMS-02 Spectral Index

[P. Muangha et al, in preparation]

Alpha Magnetic Spectrometer (AMS-02)

This Photo by Unknown author is licensed under CC BY

Journal of Geophysical Research: Space Physics

10.1002/2016JA023515

[P. Muangha et al, in preparation]

[P. Muangha et al, in preparation]

Leader fraction limitations

- The measured value of *L* is affected by high atmospheric humidity
- Analysis requires accumulating histograms: hourly data at best
- The value depends on the exact value of the dead time: not trivial to compare between stations

Crosscounter analysis

- Synchronization of counter timer clocks allows to study correlations across the monitor
- Cross-L related to atmospheric cascades

Princess Sirindhorn Neutron Monitor (PSNM)

- Doi Inthanon, Thailand (≈17 GV cutoff)
- Upgraded with cross-counter absolute timing for 18 counter tubes in horizontal row since 2015

h

а

S

р

а

С

e

Ρ

h

S

s 2022

Effects from Positions of Counter Tubes Leader fraction $(L_{ij}) =$ fraction of counts on tube i which are not associated with a later count on tube j

Associated counts between

- Near tubes (∆ ≤ 6): same atmospheric secondaries interacting with monitor
- Far tubes (∆ ≥ 12): shower from same primary CR (hinted by simulations, focus of this work)

End tubes: less nearby lead, lower count rates

 Middle tubes: more nearby lead, higher chances for secondary interactions

LF vs Tube Separation

T h

а

S

р

а

С

e P

h

y

S

С

S

2

0

2 2

а n h

h

Cross-counter leader fraction for different counter combinations at Mawson

Comprehensive analysis

Individual "cluster" events can be sampled and analyzed in detail

PSNM Interaction Histories

Actual air shower core (left) and two simulated 100 GeV neutrons. Time runs upward; blue lines are one millisecond apart.

PSNM Simulations

In each case the number of detectors hit is plotted horizontally, while the total number of hits is plotted vertically.

Left: 1 GeV neutron pencil beam.

Center: 100 GeV neutron pencil beam.

Right: 1 to 100 GeV, E^{-1} spectrum distributed in location and incident direction.

PSNM Simulation and Data

Left: Simulation re-weighted to $E^{-2.5}$.

Center: Two days of actual data.

Right: Data selected for a single, contiguous span of hit detectors with no hits in the end detectors.

Final Analysis Presented at the ICRC in 2021

From PoS(ICRC2021)1240

Further progress has been presented at meetings, but this is currently the latest printed version.

Multiplicity studies in the near future

- Connection between CR spectrum and other multiplicity data?
- Monte Carlo simulations still not perfect
- Modern electronic components can be a game changer
- Artificial intelligence may help, but probably not in the near future
- New theoretical approaches?

Thank you