Pulse selection

Ekawit Kittiya, Waraporn Nuntiyakul, Kullapha Chaiwongkhot, Alejandro Saiz

Inside a neutron detector

Signal processing in detector

Credit: Paul Evenson

Oscilloscope measurement on detector linear output at Princess Sirindhorn Neutron Monitor, Doi Inthanon

Credit: Kullapha Chaiwongkot

Pulse

- Signal recorded in integer
- Baseline = mostly repeated integer
- Pulse > Baseline + 1

Pulse before filtering

Pulse before filtering: Histogram

pulse area distribution

Pulse after filtering

Pulse area distribution

Wall effect

Remove abnormal pulse

- Calculate average pulse
- For each pulse
 - Scale its height to that of average pulse
 - Find sum of squared residual $\sum_i (x_i x_i^{ave})^2$
 - Remove pulse that gives maximum residual from the loop
- Repeat until sum of squared residual < 1000 for every pulse</p>

All have $\sum_{i} (x_i - x_i^{ave})^2 < 1000$ (good shape)

Pulse area distribution

Linear fit to pulses of the similar shape

Reference pulse: Dots to function

Reference pulse: Dots to function (left)

Reference pulse function on different scaling

Trying fitting on pile-up pulse

Fitting results 1 pulse, R = 0.4625262 pulses, R = 0.996240 3 pulses, R = 0.998827pulse pulse pulse sum sum sum -----pulse #1 pulse #1 pulse #1 pulse #2 pulse #2 pulse #3 Ó Ó

Pulse area distribution after deconvolution

Pulse area distribution after deconvolution (pile-up region only)

Conclusion

- ► The method need majority of pulse being single
- Good enough for counting pulse but not good at finding exact pulse parameter of each pulse
- For real time pulse count, can only separate the singles and the pile-ups.

Future work

Collect more data to confirm pile-up pulse distribution.

"

Thank you

"