### ANALYSIS OF NEUTRON TIME-DELAY HISTOGRAMS FROM CHANGVAN LATITUDE SURVEYS

### PANUTDA YAKUM, Asst. Prof. Dr. Waraporn Nuntiyakul

DEPARTMENT OF PHYSICS AND MATERIALS SCIENCE. CHIANG MAI UNIVERSITY, CHIANG MAI, THAILAND





\*\*\*\*

### **Changvan neutron detectors**



Drawing of the Changvan monitor. Tube 1 and Tube 3 are leaded detectors. Tube 2 is unleaded neutron counter hold onto three supported wooden plates.







### TIME-DELAY HISTOGRAMS 🌲

• Distribution of the time delay between successive neutron counts at one counter tube recorded during one specific 1 h interval. (left) Long time delays show the exponential distribution typical of unrelated events, while (right) short time delays deviate substantially from the exponential function (red line). The electronic dead time is typically  $t_d \sim 80 - 90 \mu s$ .



# Leader fraction

- Leader fraction (*L*) refers to neutron counts that do not follow a preceding neutron count in the same counter from the same atmospheric secondary particle
- We statistically calculate the leader fraction (*L*) from histograms of time delay that related to cosmic ray spectral index.
- Amplitude of exponential tail (red) indicates rate of "leaders" arriving by chance, not "following" in temporal association with preceding count.









# Leader fraction calculation



$$L = \frac{\frac{A_0}{\alpha}e^{-\alpha t_d}}{\sum_{t=t_d}^{t_0} N_t + \frac{A_0}{\alpha}e^{-\alpha t_0}}$$

where  $\alpha$  and  $A_0$  are the parameters from the hourly long-time histogram fit.  $t_0 = 0.142$  s is the overflow time in the electronic system, and dead time  $t_d = 87 \ \mu s$ . The term  $\sum_{t=t_d}^{t_0} N_t$  is the sum of the neutron pulses for all time bins from  $t_d$  to  $t_0$  from the recorded histogram files

#### Result

#### Time-delay histogram of 2<sup>nd</sup> hour UT on the 20<sup>th</sup> December 2019 of the survey year 2020





### Leader fraction of single-tube in the survey year 2018-2019



### Leader fraction of single-tube in the survey year 2019-2020





Data set of the survey year 2019 (a)-(d) and (e)- (h) of the survey year 2020, as a function of time.





Result

#### Dorman functions to fit Leader rate vs apparent cutoff rigidity for the survey year 2019 (CN35) and the survey year 2020 (CN36)



| Survey Year | Analysis  | $R_0$ | $\alpha$ | $\kappa$ |
|-------------|-----------|-------|----------|----------|
| 2018-2019   | (T1+T3)/2 | 7.320 | 6.434    | 0.7999   |
| 2019-2020   | (T1+T3)/2 | 7.363 | 8.140    | 0.8769   |
| 2019-2020   | T2        | 5.249 | 7.611    | 0.8317   |

we apply the Dorman function for the leader rate:

$$R = R_0 \left( 1 - e^{-\alpha P_c^{-K}} \right)$$

can be differentiated to determine the Differential leader rate response function (*DLF*):

$$R = \int_{P_c}^{\infty} (DLF) dP$$
$$DLF = R_0 \alpha P^{-\kappa - 1} (e^{-\alpha P^{-\kappa}})$$

Where  $R_0$ ,  $\alpha$ , and  $\kappa$  are free parameters.



#### Differential leader rate response function for the survey year 2019 (CN35) and the survey year 2020 (CN36)





### The count rate (left) and leader rate (right) ratio of unleaded vs. leaded counters as a function of apparent cutoff rigidity for the 2019 and 2020 survey years.



### Leader fraction of cross-tube

- Changvan latitude survey 2018-2019
- Changvan latitude survey 2019-2020



Long and Short time delay histogram of cross –tube of 17<sup>th</sup> hour UT on the 11<sup>th</sup> February 2019 of the survey year 2018-2019 (CN35)



Long-time delay histogram of cross –tube of 9<sup>th</sup> hour UT on the 3<sup>rd</sup> September 2019 of the survey year 2019-2020 (CN36)



#### Short-time delay histogram of cross –tube of 9<sup>th</sup> hour UT on the 3<sup>rd</sup> September 2019 of the survey year 2019-2020 (CN36)



Leader fraction of cross-tube in the survey year 2018-2019 (CN35)



#### Leader fraction of cross-tube in the survey year 2019-2020 (CN36)

### Next plan



### Leader fraction of cross-tube (Changvan and South pole)

- Pressure Correction
- Temperature Correction
- Integral Response function / Differential Response function



## THANK YOU FOR YOUR ATTENTION