## Cosmic Ray Flux Correlation between McMurdo and Jang Bogo Stations

 ${ }^{\text {a }}$ Chiang Mai University, THAILAND
${ }^{\text {b }}$ University of Delaware, USA
'Mahidol University, THAILAND
${ }^{\text {d }}$ Chonnam National University, SOUTH KOREA

Solar Energetic Particles (SEPs) and Galactic Cosmic Rays (GCRs)



Figure 3 Standard Neutron Monitor


## McMurdo and Jang Bogo stations



Figure 1 Bird-eye view of McMurdo Station (courtesy: nmdb database)


Figure 2 Bird-eye view of Jang Bogo Station (courtesy: KOPRI)

## McMurdo and Jang Bogo stations



Figure 4 12-1 counter tubes located at McMurdo during December 2015 to October 2016


Figure 5 6-1 counter tubes located at Jang Bogo during December 2015 to October 2016

Data during December 2015 to January 2017 has been analyzed in this work!

Relative count at Forbush decrease


Nuntiyakul et al.

## Data correction and cleanup

$P_{0}$ is defined for each stations


Missing data marked as 0 or -1
day
Corrected count $c_{i}$


## MCMU tube 0 Fourier transform

## JBGO tube 0 Fourier transform



## Whole station count

McMurdo summed over 11 tubes



Find $\tau$ that maximizes $c f[\tau]$



Find $\tau$ that maximizes $c f[\tau]$

McMurdo vs Jang Bogo, whole dataset


## Linear, whole station



## $2^{\circ}$ polynomial, whole station



## $3^{\circ}$ polynomial, whole station



## $4^{\circ}$ polynomial, whole station



## $5^{\circ}$ polynomial, whole station



## Linear, tube by tube, peak only



## $2^{\circ}$ polynomial, tube by tube, peak only



## $3^{\circ}$ polynomial, tube by tube, peak only



## $4^{\circ}$ polynomial, tube by tube, peak only



## $5^{\circ}$ polynomial, tube by tube, peak only



## Which one?

- Introduce variation while keeping the middle value
- By randomly removing data
- Inspired by k-fold cross-validation ( $k=5$ in this work)


## Underfitting and overfitting



## 5-fold cross-validation


$1 / 5$ removed
other $1 / 5$ removed


## 5-fold cross-validation, from -100k to 100k seconds, 1000 iterations




CV.STD = cross-validation STD calculated from $5^{*}$ iteration values of $\tau$ at peak
iteration $=1000$


## 5-fold cross-validation, 1000 iterations from -200k to 200k seconds, 1000 iterations






## 5-fold cross validation, 100 chunks




5-fold cross 5 -fold cross validation, 100 chunks from -100 k to 100 k seconds, 1000 iterations


## 5 -fold cross validation, 100 chunks from -200k to 200k seconds, 1000 iterations



## Works on progress

- Segment correlation i.e., correlation of data at MCMU at 03:00-06:00
- temporal correlation i.e., $\operatorname{corr}(n, \tau)=\sum_{i} r_{M}[i+n] \cdot r_{J}[i+n+\tau]$
- Fewer sample, recalculate average and SD for every $\tau$ while taking missing data into account
- for each $\tau$ if $r_{M}[m]$ or $r_{J}[m+\tau]$ is missing, both are treated as missing
- Performance problem

$$
\begin{gathered}
r_{i}=\frac{c_{i}-\operatorname{average}\left(\left\{c_{i}\right\}\right)}{\operatorname{std}\left(\left\{c_{i}\right\}\right)}, i=M, J \\
c f[\tau]=\sum_{m=0}^{N-1-\operatorname{Max}(|\tau|)} r_{M}[m] \cdot r_{J}[m+\tau] \\
\text { Find } \tau \text { that maximizes } c f[\tau]
\end{gathered}
$$

## Thank you

