

Cosmic Ray Flux Correlation between McMurdo and Jang Bogo Stations

E. Kittiya,^{a,*} W. Nuntiyakul,^a P. Evenson,^b A. Saiz,^c D. Ruffolo,^c S. Oh^d and A. Seripienlert^e

^aChiang Mai University, THAILAND

^bUniversity of Delaware, USA

^cMahidol University, THAILAND

^dChonnam National University, SOUTH KOREA

^eNational Astroniomical Research Institute of Thailand (NARIT), THAILAND

Hajo Drescher, Frankfurt U.

Figure 3 Standard Neutron Monitor

McMurdo and Jang Bogo stations

Figure 1 Bird-eye view of McMurdo Station (courtesy: nmdb database)

Figure 2 Bird-eye view of Jang Bogo Station (courtesy: KOPRI)

McMurdo and Jang Bogo stations

December 2015 to October 2016

Figure 4 12-1 counter tubes located at McMurdo during Figure 5 6-1 counter tubes located at Jang Bogo during December 2015 to October 2016

Data during December 2015 to January 2017 has been analyzed in this work!

Data correction and cleanup P_0 is defined for each stations $c_i = c_i^* e^{-\beta(P-P_0)}$ Corrected count c_i Uncorrected count (c_i^*) 200 count day day Missing data marked as 0 or -1 Corrected count c_i w/o outlier Corrected count c_i 1-day running average $\ddot{x} = 4.5\sigma$ +4.50 count day of year day frac

MCMU tube 0 Fourier transform

JBGO tube 0 Fourier transform

Whole station count

McMurdo summed over 11 tubes

McMurdo vs Jang Bogo, whole dataset

 $Max(|\tau|)$

Linear, whole station

Linear, tube by tube, peak only

Which one?

- Introduce variation while keeping the middle value
 - By randomly removing data
- Inspired by k-fold cross-validation (k=5 in this work)

Underfitting and overfitting

5-fold cross-validation

other 1/5 removed

5-fold cross-validation, from -100k to 100k seconds, 1000 iterations

CV.STD = cross-validation STD calculated from 5*iteration values of τ at peak

iteration = 1000

5-fold cross-validation, 1000 iterations from -200k to 200k seconds, 1000 iterations

CV.STD = cross-validation STD

5-fold cross validation, 100 chunks

1/5 of chunks removed

5-fold cross 5-fold cross validation, 100 chunks from -100k to 100k seconds, 1000 iterations

100000

-100000

75.ÓOC

5-fold cross validation, 100 chunks from -200k to 200k seconds, 1000 iterations

Works on progress

- Segment correlation i.e., correlation of data at MCMU at 03:00-06:00
- temporal correlation i.e., $corr(n, \tau) = \sum_{i} r_M[i+n] \cdot r_J[i+n+\tau]$
- Fewer sample, recalculate average and SD for every τ while taking missing data into account
 - for each τ if $r_M[m]$ or $r_J[m + \tau]$ is missing, both are treated as missing
 - Performance problem

$$r_{i} = \frac{c_{i} - average(\{c_{i}\})}{std(\{c_{i}\})}, i = M, J$$

$$cf[\tau] = \sum_{m=0}^{N-1-Max \ (|\tau|)} r_{M}[m] \cdot r_{J}[m+\tau]$$
Find τ that maximizes $cf[\tau]$

Thank you